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This research project holds symbolic meaning in many respects: its theme, analytical depth, method, research group
and collaborative approach, as well as its ultimate purpose.

The theme: innovation, explored in its most current form, through strategic technologies — such as deep tech and clean
tech — and interpreted as technical progress and the manifestation of “creative destruction’, where competitiveness
and security become intertwined. Indeed, within the current geopolitical landscape, the European Union has shifted
towards an industrial policy inspired by the principle of Open Strategic Autonomy. Ever since its foundation in 1986,
the Tagliacarne Institute has committed to investigating innovation in SMEs. Currently, as the Research Centre of
the Chamber of Commerce, it undertakes the challenge of capturing the firm dynamics of technological progress,
indispensable for sustainable competitiveness, autonomy, and security.

Analytical depth: focusing on enterprises while offering a comparison both within the EU and between the EU and
other global actors, because one must adopt a global approach to understand Europe.

The method: combining economic theory and advanced statistical instruments with cutting-edge artificial intelligence
techniques to fully exploit the potential of large and integrated data sources.

The research group and its collaborative approach: as it combines expertise in economics, statistics, and data science,
this research project, carried out in scientific partnership with the Department of the Treasury of the Ministry of
Economy and Finance, Universitas Mercatorum, and with the support of Unioncamere Europa, is the result of a
multidisciplinary approach.

Finally, its purpose: through this study and its future developments, we aim not only to contribute to academic
knowledge but also to inform public policy. The results, in supporting the implementation of the Strategic
Technologies European Platform (STEP) and the Net-Zero Industry Act (NZIA), further encourage national and
regional investments in strategic technologies. This commitment is further iterated in the ongoing dialogue with
offices of the European Commission and national institutions.

Gaetano Fausto Esposito
General Director, Research Centre Guglielmo Tagliacarne
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Looking at EU strategic technologies through the lens of patents:
measuring, impact on productivity, and technological interdependencies

Abstract

This study aims to provide a novel perspective on Europe’s innovation landscape by offering an original, data-
driven analysis of EU Strategic Technologies (EUST), assessing firm-level innovation in the EU compared to
the United States and China, as well as other world regions. The purpose of the research is threefold: i) to
investigate firms’ innovation in EU strategic technologies (EUST) by mapping patents linked to EUST and to
isolate the subgroup related to Net-Zero technologies (EUST NZ) through Large Language Models (LLMs) and
scraping firms’ websites; ii) to estimate the effect of strategic technologies on labour productivity at the firm
level; iii) to explore technological interdependencies between strategic technologies.

The findings reveal heterogeneity in firms’” innovation propensity across EU member states. At a global level,
while the EU has a broad base of innovative firms, it lags in patent volume and intensity compared to its
competitors. The study demonstrates the positive impact of strategic technology patents on firm-level labour
productivity, particularly for Net-Zero technologies, reinforcing their strategic importance.

Additionally, the studyidentifies key interconnected technologies—such as Cloud Computing, AI, Cybersecurity,
and Hydrogen Technologies—which act as innovation hubs, crucial for advancing EU industrial policy. These
findings directly support EU policies, particularly STEP and NZIA, providing empirical evidence for optimizing
investments, closing the innovation gap, and securing Europe’s technological sovereignty. This research helps
ensure that EU investments translate into economic growth and global competitiveness.



1. Introduction

Within the current international landscape, increasingly oriented towards a multipolar system dominated by a
few strong, progressively self-confident actors, the growing relevance of security and technological sovereignty
has emerged. Given the scope and depth of the challenges, global actors have increasingly recognized the
interconnections between security, strategic technologies, and economic influence. European institutions are
no exception, yielding a series of strategic initiatives to tackle competitiveness, ultimately striving for Open
Strategic Autonomy (Schmitz & Seidl, 2023; Guerrieri & Padoan, 2024), of which technological sovereignty and
economic security are central targets (European Parliamentary Research Service, 2021; European Commission,
2023; Kroll et al. 2023; Edler, 2024).

The Letta report “Much More Than a Market” (Letta report, 2024), in providing an assessment of the European
Single Market, identified the “freedom of innovation” as a necessary and fundamental addition for the EU
to leverage its Single Market within the evolving global economy. Mario Draghi’s report on the “Future of
European competitiveness” (Draghi report, 2024), in taking stock of the growing gap vis-a-vis the US economy,
further pinpoints Europe’s innovative capacity as the root cause of the EU’s weaknesses. Strategic technologies
are at the heart of EU industrial policies (European Union, 2024a) as they play a pivotal role for technological
sovereignty, which underlies the economic security and the ambitious environmental sustainability objectives
of the Union (European Commission, 2021).

The growing gap between the EU and other global actors, particularly the US, has gained prominence in the
EU policy agenda. Indeed, the EU has struggled with slow productivity growth, declining competitiveness,
and lagging technological innovation, especially in more complex and high technology intensive technologies
(e.g., computer technologies, digital communication optics and semiconductors), while it is relatively strong
in less complex and clean technologies (Di Girolamo et al., 2023; Draghi report, 2024). Moreover, it’s worth
noting that the EU’s knowledge base of digital technologies is largely placed outside the European Union (Bello
et al., 2023). Considering that intellectual property is an important metric of innovation capacity (European
Commission, 2025a), the EU’s share of global patent applications decreased from 30% to 17% between 2000 and
2021 (European Commission - DG RTD, 2024).

Aiming at closing the innovation gap with other global players, the European Union launched a series of
industrial policies regarding technological innovation. Concerning strategic technologies that are fundamental
to fulfil EU competitiveness and security ambitions, the European Commission adopted two legislative initiatives
aimed at fostering their development, namely the Net-Zero Industry Act (European Union, 2024b) and the
Regulation establishing the Strategic Technologies European Platform (hereinafter, STEP) (European Union,
2024a). The Net-Zero Industry Act (hereinafter, NZIA) represents the first plan set out to boost European
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net-zero industry by establishing a framework of measures that stimulate the manufacturing capacity and the
achievement of specific targets by 2040. More recently, the Clean Industrial Deal' reinforced the EU’s strategy
on this field by providing clear business incentives for industries to decarbonize within Europe. Indeed, it
proposes measures aimed at reducing energy prices, stimulating internal demand for clean technologies, and
mobilizing investments towards clean-tech sectors with the twofold objective of protecting energy-intensive
sectors from unfair competition and supporting the development of the European clean-tech sector. The STEP
Regulation is wider in scope, as it aims to promote, develop and safeguard the uptake of critical technologies
(and their value chains) not only in the clean technology realm (i.e., technologies under the NZIA) but also in
advanced digital technologies and deep tech innovation.

The present study has manifold objectives. Firstly, given the importance of strategic technologies in EU
policy, the main goal is to measure firms’ innovation level in EU Strategic Technologies (EUST) - according
to STEP and NZIA EU Regulations (Regulation EU 2024/795 and Regulation EU 2024/1735, see European
Commission 2024a, 2024b) - by mapping patents in EUST. The choice of patents is based on at least two
reasons: i) the recognized importance of patents for the development of strategic technologies, as underlined
by the European Investments Bank (EIB, 2024); ii) the fact that in the literature, patents have long been used
as one of the main indicators of innovation, as they cover several aspects of firm’s innovative activity (Hall et
al., 2001). Having mapped the typologies of patents linked to EUST, we then conduct a cross-country analysis
both among EU countries, and between the EU and the main global actors (i.e., the US and China). Secondly,
considering that productivity is one of the main elements of EU industrial policy (Draghi report, 2024), we
estimate — for the Italian case - the effect of EUST on firms’ labour productivity. Thirdly, since technological
interdependence has long been acknowledged as a driver of innovation and technological change (Rosenberg,
1979, recently, Colladon et al., 2025), we investigate the connections between each of the EUST aimed at finding
the technological interdependencies that are essential for understanding innovation dynamics and structural
(network) linkages, as progress in one sector is often influenced by developments in related domains. This
applies in particular to the twin (green and digital) transition as highlighted in a recent study at EU level
(Bontadini & Meliciani, 2025).

More specifically, the four objectives of the present study are as follows:

(i) measuring innovation in EUST - according to STEP and NZIA EU Regulations - through the identification
of patent codes (14-digit of the International Patent Classification) linked to the EUST, by leveraging on Large
Language Model (LLM) with a robustness check by scraping a sample of firms’ websites;

(ii) cross-country analysis regarding: innovative firms in EUST - according to ownership of patents linked to
EUST - among EU member States and comparing the EU with other global actors (namely the US and China);

1. The Clean Industrial Deal: A joint roadmap for competitiveness and decarbonization, COM(2025) 85 final, Brussels, 26.2.2025.
11



diffusion (i.e., number) of patents in EUST;
(iii) estimating the effect of EUST on firms’ labour productivity for the Italian case through econometric
analysis;

(iv) investigating the connections between each of the EUST through a network analysis (Bipartite
Configuration Model (BiCM) Method) by answering the simple question: “Given any particular technology (in
our case EUST) of interest, how many other technologies (EUST) are connected to it?

All analyses are conducted: i) on all EUST while also specifically highlighting the Net-Zero Strategic technologies
(Net-Zero EUST), which are part of EUST; ii) at the firm’s level while also focusing on the number of patents
in EUST.

While a mapping of net-zero technologies has been performed in The net-zero manufacturing industrial
landscape across the Member States (European Commission - DG ENER, 2024), which identifies the products
linked to these technologies, and a mapping of clean-tech patents, even though not explicitly in line with the
Net Zero Industry Act, was conducted by the European Investment Bank (EIB, 2024), a complete study of
innovation in EUST - as defined by the EU documents — by mapping the patents related to these technologies
has not yet been carried out to the best of our knowledge. Notwithstanding the long tradition of studies on the
impact of patents on various dimensions of firms’ performance, such as productivity (Bloom & Reenen, 2000;
Bogliacino & Pianta, 2009), it is unclear whether, by focusing only on the firms with patents, a further stronger
effect on firms’ performance produced by EUST arises.

This study provides evidence potentially useful for EU policies in several ways. Firstly, by highlighting the
heterogeneity of innovation in EUST among member states, as well as empirically measuring the gap of the EU
with respect to the US and China. Secondly, by empirically demonstrating, even though only for the Italian case,
how EUST act as catalysts for labour productivity at the firm level by including the key role of Capital Market.
Finally, by underlining which EUST are more central, performing the highest degrees of interdependencies
with other EUST.

In a nutshell, empirical evidence can support impact assessment of industrial policies enhancing technology
generation in strategic areas. The remainder of the study is structured as follows: Section 2 illustrates the
institutional background; Section 3 describes the data and method applied to identify the patents linked to
EUST; Section 4 comments on the results of the diffusion of innovation in EUST across EU countries and
global competitors, in terms of both firms and number of patents; Section 5 investigates the effect of EUST on
labour productivity for Italian firms; Section 6 analyzes the technological interdependencies between each of
the EUST; Section 7 concludes the paper.
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2. Institutional background
2.1 Strategic technologies at the root of the new EU policy

The growing gap that has opened up between the EU and other global actors, particularly the US, has gained
prominence within the European political discourse in the past several months, as emerges from the Draghi report
on the Future of European Competitiveness (Draghi Report, 2024) and, more recently, the EU Competitiveness
Compass (European Commission, 2025b; Zettelmeyer, 2025), among other political documents. This gap,
mainly attributable to lagging advanced technological innovation and labour productivity, as well as an ageing
population, comes amidst rapid change driven by the twin imperatives of the digital and green transition, on
the one hand, and increasing geopolitical uncertainty, on the other.

Given the current context, European institutions have risen to the challenge of regaining competitiveness,
unveiling an increasingly elaborate new policy platform inspired by a renewal of political-economic thinking
with the Letta and Draghi reports. On April 14, 2024, the Letta report Much More Than a Market assessed
the European Single Market as unfit for the current international landscape and challenges, particularly in the
strategic innovation field. The report thus called for measures to enhance the functioning of the Single Market,
emphasizing the role of technology and innovation, and encouraging the adoption of the “freedom of innovation”.
Indeed, only by implementing the proposed “fifth freedom” can the Single Market become a more dynamic
environment, enabling innovators, accelerating the development and dissemination of new technologies,
ultimately fostering technological progress and entrepreneurship instead of hindering it. Additionally, the
report proposed the improvement of the Capital Markets Union, now the Savings and Investments Union
(European Commission, 2025c), as the necessary condition to finance European innovation needs for digital
and green transition, which is mainly driven by investments in strategic technologies (i.e., deep-tech and Net-
Zero technologies), and therefore avoiding the “curse of mature technology” (Buti et al., 2025).

In this regard, the Draghi report on the Future of European Competitiveness (Draghi report, 2024), presented
on September 9, 2024, correctly identified the linkages between strategic technologies, innovation and
competitiveness, also aimed at enhancing security by reducing vulnerabilities and lessening dependencies on
foreign markets (for an empirical analysis on this issue, see Arjona et al., 2023).

In the vein of the Letta and Draghi reports, the European Commission, on January 29, introduced the
Competitiveness Compass (European Commission, 2025b), once again underscoring the urgency of revitalizing
European industrial competitiveness and strengthening the manufacturing capacity needed to produce strategic
technologies, among other issues. The path therefore appears clear. The growing relevance of productivity and
technological innovation within the European policy discourse is unmistakable and it cannot be separated
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from the broader geopolitical environment. Indeed, as the international landscape, marked by increasing
uncertainty and growing geopolitical competition, has evolved the European Union has progressively placed
greater emphasis on security and sovereignty, marking a significant shift from its traditionally open and liberal
economic stance. Nonetheless, the EU has adapted its strategic posture. Most notably, however, is the fact
that, while the conceptualization of policy has evolved - from Open Strategic Autonomy to Economic security
- technological sovereignty has remained fundamental to this commitment. As Europe faces the imperative
of securing critical supply chains (Arjona et al., 2024), boosting technological progress, and supporting key
industries (European Parliamentary Research Service, 2021; European Commission, 2023; Kroll et al. 2023;
Edler, 2024), technological sovereignty has therefore emerged as critical for Europe’s global standing. For this to
happen, the European Union must make progress on several fronts, among which the development of strategic
technologies stands out.

2.2 The EU policy on Strategic Technologies: Net Zero Industry Act and STEP

For the reasons discussed above, in 2024 the European Commission adopted two legislative initiatives aimed at
fostering the development of strategic technologies that are fundamental to fulfilling the EU’s ambitions, namely
the Net-Zero Industry Act (European Union, 2024b) and the regulation establishing the Strategic Technologies
European Platform (European Union, 2024a). The NZIA represents the first plan set out to boost European net-
zero industry by establishing a framework of measures that stimulate the manufacturing capacity of net-zero
technologies in the EU and the achievement of specific targets by 2040.> To deliver the results for which it has
been set out, namely increasing the manufacturing capacity of net-zero technologies, the European Commission
has proposed the following solutions: streamlining administrative and permit-granting procedures; the creation
of a Net-Zero Europe Platform to facilitate access to finance; the stimulation of public demand for these
technologies via public procurement procedures and auctions; the introduction of regulatory sandboxes for
the development, testing and validation of innovative net-zero technologies; and the creation of European net-
zero industry academies to develop training and education on net-zero technologies. Recently, the European
Commission has also adopted the Clean Industrial Deal with the objectives of decarbonizing energy-intensive
sectors and supporting the development of the European clean-tech sectors, while preserving competitiveness
vis-a vis global competitors. To achieve these purposes, the plan sets out clear business incentives for industries
to decarbonize within Europe by proposing a set of measures that concern the following six business drivers:
affordable energy; lead markets; financing; circularity and access to materials; global markets and international
partnerships and skills.

2. The targets are the following: to achieve a manufacturing capacity of net-zero technologies of at least 40% of the EU’s annual deploy-
ment needs, necessary to reach the 2030 climate and energy targets; and to reach 15% of world production of net-zero technologies by
2040, being able to achieve the 2040 climate and energy targets (Regulation EU 2024/1735).
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The Regulation establishing the STEP, despite having the same objective as the NZIA, is wider in scope as it
aims to promote, develop and safeguard the uptake of critical technologies (and their value chains) not only
in the clean technology realm (i.e., technologies under the NZIA) but also in the following two sectors: digital
technologies and deep tech innovation, which include AI, quantum technologies, robotics and autonomous
systems; and biotechnologies, such as bioinformatics, nanobiotechnologies and process biotechnology
techniques. To stimulate investments in these technologies, the regulation advances the rationalization of
eleven EU programs and funds which already exist, and which can be used to finance the uptake of critical
technologies (these include for example Horizon Europe, the Innovation Fund and the European Defense Fund).
Furthermore, it introduces two new instruments to attract investments in projects that are in line with STEP
objectives: the Sovereignty portal,® i.e. a web page to help project promoters and enterprises find support and
financing opportunities to develop their STEP investments; and the Sovereignty Seal, granted to projects that
contribute to the STEP objectives, to help promoters gain visibility and attract public and private investments.
More recently, the European Commission has also decided to allocate €1.3 billion, through the Digital Europe
Programme (DIGITAL) work programme for 2025 to 2027, for the deployment of critical technologies that
are strategically important for the future of Europe and its tech sovereignty, such as Artificial Intelligence,
cybersecurity and high-performance computing.* In conclusion, the significance of strategic technologies is
evident if one considers the nexus between STEP technologies, productivity and strategic autonomy (e.g., Edler,
2024). The manufacture of NZIA technologies, for instance, can reduce the EU’s dependence on foreign energy
sources and lower energy costs and price volatility, ultimately increasing competitiveness. Analogously, the
diffusion of advanced digital technologies is critical to lifting productivity growth across industrial ecosystems.

3. https://strategic-technologies.europa.eu/investors_en
4. COMMISSION IMPLEMENTING DECISION of 28.3.2025 on the financing of the Digital Europe Programme and the adoption of
the multiannual work programme 2025-2027
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3. Data and method
3.1 The identification of patents in EU Strategic Technologies

In this section, we explain the method used to identify the patents linked to EU strategic technologies by
taking into account, on the one hand, the list of strategic technologies as defined by the European Commission
(Table A1 in Appendix), and on the other hand, the International Patents Classification (IPC) at the maximum
level of detail (14-digit). To achieve this goal, we leveraged a Large Language Model (LLM) to streamline
the identification of patent categories corresponding to the European Union Strategic Technologies. Recent
literature on innovation by using patents recognized that «a newer generation of textual analysis techniques,
for example based on transformers or large language models (ChatGPT, etc.), could be used to this purpose
[analysis of patents] in light of their high potential» (Colladon et al., 2025, p. 15).

The analysis proceeded in multiple stages and relied on the content evaluation of several text files, with the
goal of accurately matching these technologies to their corresponding International Patent Classification (IPC)
codes at the most granular 14-digit level.

As a preliminary step, we performed data cleaning on the input files — provided as PDF documents from the
official website of the World Intellectual Property Organization (WIPO) and containing the full IPC classification
- to remove superfluous information such as page headers, footnotes, page numbers, and any extraneous
textual elements. This pre-processing was essential to enable the LLM to focus on the core classification content,
ensuring the extraction of only the semantically relevant patterns while mitigating potential misinterpretations
caused by inconsistent text formatting. Additionally, we standardized the textual representation of the IPC
codes, reorganizing entries to achieve a uniform data structure, thereby enhancing the efficiency of subsequent
automated analyses.
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Figure 1A. Workflow for patent category identification using LLM
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Source: Research Center of the Chambers of Commerce Guglielmo Tagliacarne

By providing the cleaned and standardized classification files to ChatGPT-4 - acknowledged at that time as a
state-of-the-art multi-modal model for advanced text comprehension and classification tasks and still widely
considered reliable for large-scale classification (OpenAl et al., 2023) - we adopted prompt-engineering
strategies recommended by recent research (Brown et al., 2020). Specifically, after loading the complete
IPC classification and a descriptive guide on how the classification system operates, we iteratively prompted
ChatGPT-4 with each target technology and requested the corresponding patent categories. We used the
OpenAl API to systematically set and adjust hyperparameters such as temperature and top_p, ultimately
enabling us to optimize the balance between creativity and reliability. In particular, after conducting multiple
iterative trials to verify the consistency of generated results across separate runs, we settled on a temperature
of 0.3 and a top_p of 0.9, since this configuration consistently yielded coherent and precise outputs. Although
fine-tuning the model for domain specificity was initially considered, the infrastructure available in March
2024 did not yet allow for fully customized fine-tuning of ChatGPT-4; consequently, we employed repeated
trials and refined prompts to achieve stable response, an approach often referred to as “prompt refinement”
or “prompt stacking” in advanced prompt-engineering literature (Liu et al., 2023; Wei et al., 2023). Figure 1
displays the entire process.

In order to verify the completeness and accuracy of the LLM output, we implemented a series of validation
steps. First, we conducted a manual review of approximately 100 randomly selected IPC codes to detect any
anomalies or incorrect assignments to the strategic technologies; none were identified. Next, a text-mining
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procedure employing regular expressions on keywords relevant to each strategic technology (for instance, using
“heat pump” for “Heat pumps and geothermal energy technologies”) confirmed that no IPC codes identified
by the LLM had been overlooked. Taken together, these measures demonstrated the robustness of the LLM’s
classifications.

According to the results of this analysis, we identified 9,781 patents codes (IPC codes 14-digit level) related to
EUST, of which 2,448 are related to Net-Zero technologies (EUST NZ)

Figure 1B. Number of 14-digit codes of IPC classification

79,500
Total

69,719
EU Strategic No EU strategic

9,781

technologies technologies

2,448 7,333
Net-Zero No Net-Zero

Note: The total number of codes (79,500) may change because of introduction of new inventions over time.

Source: Research Center of the Chambers of Commerce Guglielmo Tagliacarne

Once patents codes (IPC codes 14-digit level) related to EUST have been mapped, we identified firms with
patents in EUST by exploiting Moody’s Intellectual Property dataset. We selected, through a boolean search,
the set companies holding these types of patents. The patents were filtered based on the application filing date,
including only those with a filing date between 01/01/2004 and 01/01/2024. This time frame was chosen to
generally exclude patents with a useful life exceeding 20 years, given that industrial property rights for invention
patents extend for 20 years from the filing date.* No filters were applied to patent offices, so the selected patents
may have been filed at any patent office worldwide. The dataset therefore includes the total patents owned
directly by companies.

5. Industrial property rights last 20 years from the filing date for invention patents, 20 years from the grant date for plant variety
rights, and 10 years from the filing date for utility models, starting from the filing date.
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3.2 Robustness check: Quality survey on the ChatGPT patent mapping process

We further investigated the accuracy of the ChatGPT patent mapping process by observing a sample of websites
selected from the list of 5,000 business units in the reference population. Specifically, we selected URLs (Uniform
Resource Locator) and interactively observed the content of the website related to each sampled URL, searching
for the presence of EU Strategic Technologies - EUST (Table Al in Appendix).

We followed a protocol for detecting the presence of EUST. Assuming that each website has a layered structure,
we determined the depth of the website beyond which the analysis will not be performed. We also did not
search for the information on the linked site.

We apply these rules because the URL sample will be a ground truth sample for a future automated analysis
of the full set of 5,000 business units. In this case, we perform a massive web scraping and make a prediction
of technology presence using a supervised approach based on the ground truth data sample. In order to limit
the computational complexity of the scraping process, automatic scraping is performed using the protocol
described above.

We selected the URLs according to a stratified simple random sampling without replacement, with strata given
by Italian macro-regions (GEO: North, Centre, South and Islands), size classes of employees (SIZE: 5-49, 50-
249, 250 or more), adopted type of technology (TYPE: EUST, EUST NZ).

The stratum sample allocation oversampled the larger economic units (strata with 50-249, 250 or more
employees) with respect to the proportional population size allocation. The sample includes 627 URLs, but
52 URLs were not operational (incorrect URLs or URLSs that did not correspond to the website of the business
unit). Of the 575 sites examined, 544 were related to EUST, while 31 were not.

We apply a calibration estimator (Deville and Sarndil, 1992) for producing the estimates. The calibration
constraints are the marginal distributions of the number of business units by GEO, SIZE and TYPE. The
calibration step also adjusted the sampling weights for non-operational URLs. Table 1 shows the relative
frequencies of business units related to EU Strategic Technologies, and also the specific Net-Zero Strategic
Technologies.
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Table 1. Estimated relative frequencies of business units related to EU Strategic Technologies

1 0,
Variable Category Estimate Confidence Interval Confidence Interval (95%)

(95%) Lowerbound Upperbound
North 0.98 0.97 0.99
GEO  Center 091 0.86 0.96
South 0.84 0.75 0.92
0-49 0.95 0.93 0.97
SIZE  50-249 0.95 0.92 0.98
250+ 0.97 0.94 1.00
EUST NZ 0.98 0.96 1.00
TYPE
EUST 0.94 0.92 0.96
Italy 0.95 0.95 0.94

Source: Research Center of the Chambers of Commerce Guglielmo Tagliacarne

4. Results

In this paragraph we show descriptive statistics concerning firms with patents in EU Strategic technologies
(EUST), and the related numbers of patents — also highlighting the part referred to the Net-Zero ones (EUST
NZ) - among both World macro regions and EU member countries. All data refer to the limited companies.
Specifically, two indicators were developed to capture the degree and the dimensions of innovation within the
entrepreneurial system: i) the first one is Firms’ propensity, which corresponds to the number of firms with
patents in EUST (and EUST NZ) per 10,000 firms, and it reflects the extent to which innovation is diffused
among firms (i.e., only a few or many firms); ii) the second one is Patent intensity, which measures the number
of patents in EUST (and EUST NZ) per 100,000 inhabitants, therefore serving as a proxy for the intensity of
innovation (i.e., few or many patents). These two indicators can provide relevant insights for policy design,
as they can shed light onto the trade-offs between supporting wider adoption of innovation across firms and
fostering innovation intensity.

4.1 EU in the world competition

The data (Table 2, Maps 1-3, and Table A2 and Maps A1-A3 in Appendix) delivers some unexpected results.
Whereas China dominates the rankings of the number of firms which own patents for both EU Strategic
Technologies (EUST) and EU Strategic Net-Zero Technologies (EUST NZ), the US and the EU alternate
between second and third depending on the category. Indeed, while the US outperforms the EU with regards
to EUST, it lags behind the EU in terms of EUST NZ. The results differ if one takes into account the number of
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enterprises in the economy. When considering firms’ propensity to own patents (measured as the number of
firms with patents either in EUST or EUST NZ per 10,000 firms), Japan takes the lead (110 EUST and 37 EUST
NZ), with China coming in second (100 and 39, respectively), Canada in third (24 and 7) and the US in fourth
(22 and 5). Surprisingly, among these regions, the EU 27 come in last for strategic technologies (21) and the US
drops out of the top five for Net Zero strategic technologies (5).

A similar trend appears when comparing the total number of patents and patent intensity (measured as the
number of patents per 100,000 inhabitants). Again, while China tops the rankings in absolute terms, it is Japan
that registers the highest patent intensity (2,269 patents in EUST and 422 patents in EUST NZ), followed by the
US (1,002 and 110 patents respectively) and the EU (385 and 78). Focusing on a comparison with the United
States, we can observe that the European Union shows a certain proximity in terms of firms’ propensity to
engage in strategic technologies, and an even higher propensity when it comes to firms with patents in Net-
Zero technologies. However, the EU suffers from a significant gap in terms of the overall number of patents —
both in absolute and relative terms. In contrast, when compared to China, the EU’s position is reversed: there is
a disadvantage in terms of firms’ propensity, but an advantage in terms of patent intensity - this holds true for
both EUST and EUST NZ.

Table 2. Rankings of the EU, the US, China and other world regions for firms* and patents

Firms Spread Firms’ Propensity Patents Spread Patent Intensity
Firms with N. of patents per
Ranking N. of firms patents per N. of patents 100,000
10,000 firms inhabitants
with reference to EUST

1 China Japan China Japan

2 USA China USA USA

3 EU 27 Canada Japan EU 27

4 Japan USA EU 27 China

5 Russia EU 27 Canada Canada

with reference to EUST NZ

1 China China China Japan

2 EU 27 Japan Japan USA

3 USA Russia USA EU 27

4 Japan EU 27 EU 27 China

5 Russia Canada Canada Canada

* All data refers to the limited companies.
Note: The ranking considers EU, USA, China, and other main world countries.
Source: Research Center of the Chambers of Commerce Guglielmo Tagliacarne
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Map 3. EUST patents per 100,000 inhabitants
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4.2 Inside the EU: a cross-country analysis among EU countries

The results (Table 3, Maps 4-6, and Table A3 and Maps A4-A6 in Appendix), and also provide valuable insights
into the innovative ecosystem within the European Union and its member states. While the larger economies
- Germany, Italy, and France - tend to lead in terms of the number of strategic firms, Germany, France, and
Sweden take the lead when it comes to the number of patents in strategic technologies. This could also be the
result of firm size since larger firms are more likely to get patents. In Germany and Sweden, for instance, the
firm’s average size is higher than Italy (respectively, 12.2 and 4.8 vs 4.2 employees per enterprise) that falls in 7th
place in terms of number of patents.

However, a different picture emerges when adjusting for economic and population size. In this case, Austria
and Finland, along with Germany, rank highest in firms’ innovation propensity, while Finland, Sweden, and
Ireland stand out for their patent intensity. In this case, the smaller size of a country could amplify the intensity
of innovation (indeed, among the first six countries in terms of patent intensity, only the Netherlands has a large
population, i.e., in top-ten EU countries).

Once again, similar patterns emerge with regards to Net Zero strategic technologies. While Germany, France,
and Italy report the highest number of firms owning patents — and Germany, France, and the Netherlands
account for the largest patent volumes - it is the smaller, yet technologically advanced economies that exhibit
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higher firm-level innovation propensity and patent intensity. Notably, Denmark, Luxembourg, and the
Netherlands stand out for their cutting-edge patent ecosystems, while Germany, Austria, and Finland lead in
terms of the share of firms engaged in Net Zero strategic technologies (EUST NZ).

Table 3. Rankings of Member States of the EU, data on firms* and patents for EU Strategic technologies

Firms Spread Firms’ Propensity Patents Spread Patent Intensity
. . N. of Patents per
Ranking N. of firms Firms with p qtents N. of Patents ];00, 000 g
per 10,000 firms : )
inhabitants
1 Germany Germany Germany Finland
2 Italy Austria France Sweden
3 France Finland Sweden Ireland
4 Netherlands Italy Netherlands Luxembourg
5 Spain Ireland Finland Netherlands
6 Sweden Denmark Ireland Denmark
7 Finland Sweden Italy Germany
8 Poland Luxembourg Denmark France
9 Austria Malta Spain Austria
10 Belgium Poland Austria Belgium
11 Denmark Slovenia Belgium Malta
12 Czech Republic Netherlands Poland Cyprus
13 Ireland Belgium Luxembourg Italy
14 Bulgaria France Czech Republic Spain
15 Romania Czech Republic Portugal Estonia
16 Hungary Cyprus Cyprus Lithuania
17 Portugal Spain Hungary Czech Republic
18 Luxembourg Greece Slovakia Slovenia
19 Slovakia Lithuania Romania Slovakia
20 Slovenia Hungary Lithuania Poland
21 Estonia Bulgaria Malta Portugal
22 Cyprus Slovakia Bulgaria Latvia
23 Greece Croatia Slovenia Hungary
24 Lithuania Latvia Estonia Bulgaria
25 Croatia Estonia Greece Croatia
26 Latvia Portugal Latvia Romania
27 Malta Romania Croatia Greece

* All data refers to the limited companies.
Source: Research Center of the Chambers of Commerce Guglielmo Tagliacarne
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Table 4. Rankings of Member States of the EU, data on firms* and patents for EU Net Zero Strategic technologies

Firms Spread Firms’ Propensity Patents Spread Patent Intensity
. . N. of Patents per
Ranking  N. of firms Firms with patents N. of Patents ];00,000
per 10,000 firms ; .
inhabitants
1 Germany Germany Germany Denmark
2 France Austria France Luxembourg
3 Italy Finland Netherlands Netherlands
4 Netherlands Denmark Denmark Finland
5 Spain Italy Italy Germany
6 Sweden Ireland Spain France
7 Poland Poland Belgium Sweden
8 Denmark Sweden Sweden Belgium
9 Austria Netherlands Finland Austria
10 Finland Luxembourg Austria Ireland
11 Belgium Czech Republic Poland Spain
12 Czech Republic Slovenia Ireland Italy
13 Ireland Belgium Czech Republic Estonia
14 Bulgaria France Luxembourg Cyprus
15 Hungary Spain Portugal Czech Republic
16 Romania Malta Hungary Slovenia
17 Slovakia Greece Romania Poland
18 Luxembourg Hungary Slovakia Latvia
19 Portugal Cyprus Slovenia Lithuania
20 Slovenia Slovakia Lithuania Portugal
21 Estonia Lithuania Estonia Slovakia
22 Greece Estonia Cyprus Malta
23 Cyprus Latvia Bulgaria Hungary
24 Lithuania Bulgaria Latvia Croatia
25 Croatia Croatia Croatia Bulgaria
26 Latvia Portugal Greece Romania
27 Malta Romania Malta Greece

Source: Research Center of the Chambers of Commerce Guglielmo Tagliacarne
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Map 4. EUST firms (number)

Source: Research Center of the Chambers of Commerce Guglielmo Tagliacarne
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Map 5. EUST firms per 10,000 firms
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Map 6. EUST patents per 100,000 inhabitants
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4.3. Comparing Strategic technologies with Capital Market development: a cross-country analysis

The evidence from Figure 2 confirms the link between the development of a country’s capital market and
its degree of innovation. When investigating the number of patents in strategic technologies per 100,000
inhabitants with a measure of capital market sophistication — measured here as the share of listed shares and
debt securities on total liabilities - it is clear that as the latter improves, the number of patents increase, with a
correlation of 0,77. Additionally, the countries with the highest firm propensity and patent intensity all exhibit
highly developed capital markets, further demonstrating the importance of closing the investment gap to foster
investment in innovation (Buti et al., 2025).

Figure 2. EU Patents in Strategic technologies and EU capital market development in EU countries

Underdeveloped Capital Market Developed Capital Market
High innovation in Strategic technologies High innovation in Strategic technologies
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Note: Figure reports the name of the main countries, while the points refer to all countries.
Source: Research Center of the Chambers of Commerce Guglielmo Tagliacarne and Eurostat
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4.4. Comparing Strategic technologies with R&D: a cross-country analysis

Finally, when investigating the number of patents in EU strategic technologies and R&D within the business
sector (% of GDP), clear global patterns emerge, especially regarding China, the European Union, and the
United States. While American companies spend more than the global average on R&D (measured for the
period 2019-2023) to obtain more EUST patents per 100,000 inhabitants than the global mean, other actors fare
worse in terms of patent intensity. Among them, there are both the EU and China, although the latter spends
more than the former on R&D, as shown in Figure 3.

Figure 3. Patents in EU Strategic technologies and R&D in the business sector in EU countries and major
global countries
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Note: a) Ré+D % on GDP is average for the 2019-2023 period. b) Figure reports the name of the main countries, while the points refer to all countries.
Source: Research Center of the Chambers of Commerce Guglielmo Tagliacarne
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5. The impact of EU strategic technologies on firm’s productivity: the Italian case

In this section, we investigate the effect of innovation in EU Strategic Technologies (EUST) on firms’ labour
productivity among Italian enterprises. Specifically, by focusing on limited companies, we contrast firms with
patents in EU Strategic Technologies with firms with patents unrelated to EUST. We only consider firms with
patents to better isolate the “strategic technologies effect”, and also because in literature on innovation, patents
are acknowledged as one of the best indicators of innovation (Colladon et al., 2025).

We measured labour productivity in terms of value added per employee — according to balance sheet data —
with reference to the 2014-23 period. Concerning the latter aspect, we take into account a reference period of
more than one year to capture structural relationships between the key variables of interest, thus neutralizing
the business cycle effect. With regards to the dataset, we refer to the one built in this study (see Section 3): in
particular, the analyses rely on the limited Italian companies with available balance sheet data for all years of
the period 2014-2023.

We estimated the impact of EU strategic technologies by applying several econometric methods to have more
robust results as well as to address the causality effect. We applied a large set of independent variables — besides
our main variable of interest — to control for potentially confounding effects of various firm’s characteristics that
may influence labour productivity. The description of all variables is reported in Table 5.
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Table 5. Variables description

Variables Type Description
Dependent variables
LPmean Continuous  Labour productivity (value added per employee), ten-year mean value

Main independent variables

EUST Binary
EUST_NZ Binary

EUST 012 Categorical
Control variables

Size Continuous
Industry Dummies
Localization Dummies
Age Discrete
Human capital Continuous
Export Binary
Foreign Binary
LP_initial Continuous
Instruments

RerD Continuous
High-tech sector Dummy
Capital market Dummy

for the period 2014-23, in log terms (source: elaboration on Moody’s data)

1 = firm with patents in EU Strategic Technologies; 0 = otherwise (source:
elaboration on Moody’s data)
1 = firm with patents EU Strategic Net-Zero Technologies; 0 = otherwise

(source: elaboration on Moody’s data)

0 = firm with patents in non EU-Strategic Technologies (EUST_no); 1=
firm with patents in nonm Net-Zero EU Strategic Technologies
(EUST_noNZ); 2= firm with Patents in EU Strategic Technologies Net-
Zero (EUST_NZ) (source: elaboration on Moody’s data)

Number of employees (source: elaboration on ISTAT data)

1 = if the firm belongs to a n-sector (2-digit NACE rev.2 classification);
0 = otherwise (source: elaboration on ISTAT data)

1 = if the firm belongs to a n-NUTS 2; 0 = otherwise.

Number of years since inception (source: elaboration on ISTAT data)

Share of graduates in STEM disciplines on total employees

1 = if the firms exports; 0 = otherwise (source: elaboration on ISTAT data)

1 = if the firm is a foreign-invested firm; 0 = otherwise (source: elaboration
on ISTAT data)

Labour productivity (value added per employee) in 2013 (source:
elaboration on Moody’s)

R&D asset value per employee (euro) (source: elaboration on Moody’s data)
1 = if the firm belongs to a high- / medium-high technology intensive
sector; 0 = otherwise (source: elaboration on OECD/Eurostat data)

1 = if the firm is a listed company; 0 = otherwise (source: elaboration on
Moody’s data)
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5.1. Econometric strategy

5.1.1 Cross section analysis: OLS regression
Since all independent variables are time-invariant, we conduct a cross-section analysis® by applying a log-linear
model by Ordinary Least Square (OLS) regression.
Analytically:

InLPmean; = By + BLEUST; + B,C; + &; [1]

where, LPmean is the ten-year mean value for the period 2014-23 of the labour productivity — expressed in
log terms - of the firm i; EUST is a binary variable taking value 1 if the firm holds patents in EU Strategic
Technologies; C is the vector of controls for each firm i; and &; is the error term.

5.1.2 Deepening the causality
We address the issue of causality through three approaches. The first one is the Instrumental Variables (IV)
method (Angrist et al.,, 1996; Wooldridge, 2010); the second one relies on a weighted regression after the
nearest-neighbour matching (Abadie & Imbens, 2006, 2011) by contrasting treated firms with untreated firms
of a control group; and the third one, partly linked to the second, concerns the reweighting on propensity score
inverse probability (seminal paper by Rosembaum & Rubin, 1983).

5.1.2.1 Instrumental variables approach
Although our estimations control for several factors, we check for the presence of potential endogeneity of
innovation in EU Strategic Technologies (i.e., the variable EUST) by investigating the possible presence of
exogenous variables that affect firms’ labour productivity through the endogenous variable EUST. In other
words, EUST may also depend on other unobservable-to-the-analyst-factors, that is, factors correlated with the
error term.

In line with the literature, we applied the method of instrumental variables approach by 2SLS (Wooldridge,
2010). The advantage of the IV approach is its capacity to restore the causal parameter consistency, also under
selection on unobservables (Angrist & Krueger, 2001). Thus, by using the Two Stage Least Squares (2SLS)
estimator, we modelled the IV approach.

The structural equation (second-stage) is the Equation [1] reported above. We considered a set of instrumental
variables Z; correlated with the potentially endogenous explanatory variable (EUST), but uncorrelated with the

stochastic error € in the structural equation [1].

6. Since the dependent variable could be time-variant, we also carried out a panel analysis (random effects model) finding similar
results in terms of both magnitude and statistical significance.
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The effects of the instruments on the endogenous variable are measured by the parameter f,, in the auxiliary
regression (first-stage):

EUST ; = Bo + B21Z; + B22C; + H; (2]

where EUST is the potentially endogenous explanatory variable in Equation [1], Z; is the instrumental variable,
and W is the stochastic error term.

After estimating the first-stage regression (Equation 2), in the second-stage equation EUST is replaced by its
value estimated in the first-stage - i.e. in the Equation [2]. To test if EUST is endogenous (test of endogeneity),
we used the Wu-Hausman test: if it is significant, we reject the null hypothesis that the variable is exogenous,
hence making it endogenous. Concerning the validity of the instruments, we perform two checks. First, we
checked if they are correlated with the endogenous variable (instruments relevance) by calculating an F-test
for the significance of the instruments’ coefficients: a value above 10 means that the instruments are not weak
(Stock et al., 2002, Stock & Yogo, 2005). Second, we check if they are exogenous, namely uncorrelated with the
structural error term € in the structural equation [1] by performing an overidentification restriction check
by applying the Sargan test: an insignificant value means that we do not reject the null hypothesis that the
instruments are exogenous.

5.1.2.2 Regression after propensity score matching and Inverse Probability Weighting
We estimated the effects of EU Strategic Technologies on firms’ labour productivity also through regression
after matching. Matching is a common statistical method (Stuart, 2010) for estimating treatment effects, and
even more in economic and social studies (Cliendo & Kopeinig, 2008).

In our case, treated firms are the ones holding patents in EU Strategic Technologies (EUST firms). However,
since this treatment isn't randomly assigned depending on several variables, and is instead probably correlated
with our outcome (labour productivity), we have to build a control group of firms (untreated) having similar
observable characteristics to those of the treatment group (EUST firms) while lacking, of course, patents in EU
Strategic Technologies (non-EUST firms).

To identify the firms of the control group we use the nearest-neighbour matching (Abadie & Imbens, 2006,
2011), by considering nearest neighbour with replacement and a fixed number of units.

We identified the untreated companies (non-EUST firms) of the control group through the propensity score
(Rosenbaum & Rubin 1983, 1985) that is the estimated probability of being treated given a set of observable
characteristics at the firm level (of both treated and untreated units). Specifically, we estimate the probability
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of being a firm with patents in EU Strategic Technologies as a function of the following firms’ characteristics:
technology intensity and knowledge intensity according to OECD/EUROSTAT classification, size, geographical
localization, firm age, graduated employees, governance, R&D, if firms is listed firms, total asset (description
of these variables are reported in Table A4 in Appendix). The Probit model was used to estimate the propensity
score (results of the probit are reported in Table A5 in Appendix).

Based on the propensity score, we match treated firms up to a maximum of 2 nearest neighbours non-EUST
firms. If on the one hand a smaller number of selected nearest neighbours reduces the expected bias, on
the other, it can worsen the efficiency of the estimates (Caliendo & Kopeinig, 2008). Moreover, to select the
firms most similar to the treated, we also set a caliper of 0.15: this allows us to exclude the firms that are not
sufficiently similar (Cocharan & Rubin, 1973) (i.e. those with a distance in terms of the estimated probability of
being treated compared to the treated firm greater than 15%) even though they fall in the control group of the
2 nearest neighbours. We imposed common support which excluded treatment observations whose pscore was
higher than the maximum or lower than the minimum pscore of the controls (for more details about all issues
explained above, see Cerulli, 2022).

After matching, we evaluated if treated and control group were similar in observable variables (balancing).
Results show that for all variables there are no statistically significant differences (Table A6 in Appendix; Figure
Al in Appendix also reports the propensity score density before and after matching).

Finally, we run the cross-sectional regression on the subsample of treated and matched control firms by applying
the following OLS:

InLPmean; = B, + BLEUST; +¢;  [3]

Asarobustness check, we also apply the inverse probability weighting (Horvitz & Thompson, 1952; Rosembaum
& Rubin, 1983; Wooldridge, 2002) according to which:

o for treated units the inclusion probability is equal to the propensity score: p(D=1 | x)

o for untreated units the inclusion probability is equal to: p(D=0 | x) = 1 - p(D=1 | x)
where x is the vector of observable exogenous confounding variables assumed to drive the nonrandom
assignment into treatment (Cerulli, 2022 p.102-107).
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5.2. Results

5.2.1 Baseline results
The results of the cross-section analysis show that patents in EUST have a positive impact on labour productivity.
Indeed, firms with patents in EU Strategic Technologies (EUST) have a statistically significant (p<0.01) 3.8%
higher labour productivity compared to the firms with patents which don’t correspond to EUST. (Table 6,
Model A). When considering exclusively firms with patents in Net-Zero technologies (EUST_NZ) - a subset of
EU strategic technologies — we discover that their labour productivity is significantly (p<0.01) higher by 7.3%,
compared to other firms (Table 6, Model B).

Table 6. OLS regression
InLPmean InLPmean InLPmean

(A) (B) (C)
EUST 0.038***
(0.011)
EUST_NzZ 0.073***
(0.018)
EUST 012
EUST_noNZ 0.022*
(0.013)
EUST_NZzZ 0.077***
(0.019)
+ controls
Observations 8,669 8,669 8,669

Note: i) the dependent variable is reported at the top of the column.

EUST_012; ii) EUST _no as reference category (see Table 5

Variables description); iii) standard errors in parentheses.

¥ p < 0.01, ¥ p < 0.05 *p<0.1.

These results are further confirmed when we consider simultaneously Net-Zero and non-Net-Zero strategic
technologies through a categorical variable (EUST_012) taking value 0 if the firm has patents in non EUST,
value 1 if the firm has patents in EUST but not in Net-Zero technologies, and value 2 if the firm has patents
specifically in Net-Zero EUST (see Table 5 Variables description). Indeed, we find that the effect of strategic
technologies is most pronounced in the case of Net Zero EUST. In particular, by setting the non-EUST firms
as a reference category, those with patents in non-Net-Zero EUST have a 2.2% higher labour productivity
(p<0.10), while firms with patents in Net-Zero EUST demonstrate an even greater 7.7% increase (Table 6,
Model C and Figure 3), however with a higher degree of statistical significance (p<0.01).
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Figure 3. Percentage difference of labour productivity of firms with patents in EU Strategic Technologies
(EUST) compared to firms with patents in non-EU Strategic technologies (EUST_no)

A): EUST vs EUST_no B): EUST_noNZ and EUST_NZ vs EUST_no

7.7***

3 . 8***
2.2*
EUST EUST_noNZ EUST_NZ

Note: A) refers to results in Table 6 column A; B) refers to results in Table 6 column C.
P < 0.01, ¥ p<0.05 *p<0.1

5.2.2 Addressing the causality
The findings explained above are also validated by further analyses that tackle the issue of causality. By comparing
the firms with patents in EUST (treated) with a control group of firms having the same characteristics (untreated
matched) - through regression after matching — we find a positive and statistically significant effect of Strategic
Technologies (EUST) that is even greater in the case of Net-Zero Strategic Technologies (EUST_NZ) (Table 7,
Model A, B). This was also achieved by using the inverse probability weighting technique (Table 7, Model D, E).
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Table 7. OLS regression after Propensity Score Matching (PSM) and Inverse Probability Weighting (IPW)

OLS after PSM IPW
InLPmean  InLPmean InLPmean InLPmean
(A) (B) (D) (E)
EUST 0.037** 0.026**
(0.018) (0.013)
EUST_NZ 0.129*** 0.084***
(0.025) (0.031)
+ controls
Observations 3,863 3,863 8,667 8,663
Note: i) the dependent variable is reported at the top of the column; ii) standard errors
in parentheses.

% < 0,01, p < 0.05, *p<0.1.

Even more interesting results arise from the instrumental variables estimation. In this case, we address the
causality issue by considering innovation in EU Strategic Technologies (EUST) endogenous by depending on
other factors (exogenous variables). More specifically, considering EUST endogenous (instrumented variable),
we can argue that the probability of holding patents in EU Strategic Technologies is likely to be determined by
other factors, that are the instruments. We identify three instruments. The first one is R&D (R&D asset value
per employee) in line with the literature about R&D as an important input of innovation (recently, Dong et al.
2024; on the specific case of Italian firms, Hall et al. 2013).

The second one refers to the capital market, captured here by a binary variable (Capital market) taking a value
of one if the firm is a listed company. This stems from the growing importance of the capital market, especially
the Capital Markets Union in the case of the EU, in supporting innovation, particularly in terms of innovation
at the frontier (as referenced in Letta’s Report, Chapter 2, 2024, and Draghi Report, Part B, Section 2, Chapters
1 and 3, 2024). The third variable concerns the technological intensity at the sector level by assuming that
operating in a higher technological intensity sector may affect the probability of investing in EU strategic
technologies. Basically, we constructed a variable (High-tech sector) taking value 1 if the firm belongs to a high
or medium-high technological intensity sector.”

7. According to the OECD/EUROSTAT taxonomy. Specifically (in parentheses 2-digit level of Nace Rev.2): Manufacture of basic
pharmaceutical products and pharmaceutical preparations (21); Manufacture of computer, electronic and optical products (26);
Manufacture of chemicals and chemical products (20); Manufacture of electrical equipment (27); Manufacture of machinery and
equipment n.e.c. (28); Manufacture of motor vehicles, trailers and semi-trailers (29); Manufacture of other transport equipment (30).
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The results of the IV estimation confirm the positive and statistically significant (p<0.01) effect of EUST on
labour productivity (Table 8, column B), and the larger effect of EUST_NZ (Table 8, column D). Interestingly,
looking at the first stage, we find a positive, and statistically significant (p<0.01) relationship between each
instrument (R&D, High-Tech, Capital market) and innovation in EU Strategic Technologies (EUST).

Figure 4. Framework of the IV estimation

R&D
+* ok
High-tech R EUST S Labour
sector productivity
EE L
Capital
market

Note: the figure displays the sign and the related statistical significance of the coefficient (details in Table 8).
P <0.01, ¥ p<0.05 *p<0.1

This demonstrates the validity of instruments: more technically, F statistics for the instruments’ relevance is
over 10 (43.435, p<0.01, Table 8), indicating that the instruments are not weak.

With regards to the endogeneity of the instrumented variable, the Wu-Hausmann test rejects at the 5% the
null hypotheses of exogeneity (4.284, p<0.05, Table 8), ultimately proving that EUST is endogenous. Finally,
concerning the exogeneity of the instruments, the Sargan test is not significant (0.750, p>0.10, Table 8). We can
thus assume the instruments to be exogenous. These tests are further confirmed in the IV estimation focusing
on the EUST_NZ as the main independent variable (Table 8, columns C-D).
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Table 8. Instrumental variables approach

IV-2SLS

IV-2SLS

1st Stage 2nd Stage

Ist Stage  2nd Stage

EUST InLPmean EUST_NZ InLPmean
(A) (B) (C) (D)
EUST 0.217**
(0.095)
EUST_NZ 0.366**
(0.168)
+ controls
#RerD 0.0027** 0.001**
(0.000) (0.000)
#High Tech sector 0.082*** 0.036***
(0.010) (0.006)
#Capital market 0.217 0.166***
(0.035) (0.021)
Endogeneity: Wu Hausmann (F-test) 4.284** 2.845%
Instruments relevance: F-test 43.435%** 37.9107*
Instruments exogeneity: Sargan test Chi2 0.750 1.290
Observations 8,669 8,669

Note: i) the dependent variable is reported at the top of the column; ii) standard errors in parentheses; iii) the symbol
# indicates the instrumental variable; iv) the table reports also the following tests: Endogeneity test Wu-Hausman
(if we reject the Hypothesis the variable EUST and EUST_NZ are endogenous); F-test for instruments relevance
(statistical significant with a F-value > 10 means to reject the hypothesis of irrelevance of the instrumental variables);
Sargan test Chi2 for the overidentification restriction (no statistical significant means to not reject the hypothesis of

exogeneity of the instrumental variables). *** p < 0.01, ** p < 0.05, *p < 0.1.

Finally, it is important to underline that the instrumental variables choice might be problematic in terms of
their exclusion restrictions because the instruments (R&D, High-tech sector, Capital market) may be highly
correlated with the dependent variable (InLPmean) of the selection model. In Table 9 we show that the variables
related to the exclusion restriction (R&D, High-tech sector, Capital market) are significant at the first stage and

loss significance at the second stage in the selection model.

equipment (27); Manufacture of machinery and equipment n.e.c. (28); Manufacture of motor vehicles, trailers and semi-trailers (29);
Manufacture of other transport equipment (30).
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Table 9. Check on exclusion restriction

First stage Seconfl stage
(EUST) Selection model
(InLPmean)
(A) (B)
R&D 0.002%** 0.001
(0.000) (0.000)
High-Tech sector 0.082*** 0.014
(0.010) (0.010)
Capital market 0.217*** 0.032
(0.035) (0.038)
+ other variables
Observations 8,669 8,669

Note: i) the table displays coefficients; ii) standard errors in parentheses. Iii)
dependent variable at the top of the column in bold.
ot < 0,01, p < 0.05,*p < 0.1.

6. The EU Strategic Technologies interdependencies through a network analysis

The analysis of technological interdependencies is essential for understanding the direction of technological
change (Rosenberg, 1979; Colladon et al.,, 2025) and they matter for sectoral innovation, also including twin
transition in EU (Bontadini & Meliciani, 2025). The modern industrial system increasingly relies on intersectoral
connections (Acemoglu et al., 2016), since as progress in one sector is often influenced by developments in
related domains. Thus, in line with the literature investigating the technological trajectories through the ties
among the technological fields in which firms invest (Breschi et al., 2003), by using network analysis we identify
the connections between each of the EU Strategic Technologies, aimed at identifying those that serve as central
hubs, facilitating innovation across multiple sectors (Pichler et al., 2020).

In other words, we try to answer the simple question: “Given any particular technology (in our case EUST) of
interest, how many other technologies (EUST) are connected to it?

6.1 Network analysis: Bipartite Configuration Model (BiCM) Method

A bipartite network, also referred to as a two-mode network, consists of two distinct layers of nodes, where
connections occur solely between nodes of different types. In other words, nodes within the same layer do
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not directly connect to one another, but only to nodes in the other layer. These networks are widely utilized to
model the affiliation of economic actors, such as firms, with specific groups, such as technological categories
(Newman, 2018). The most important information in a bipartite network is encapsulated in the rectangular
matrix T with dimensions nxm, commonly known as the incidence matrix, where n is the number of EU
Strategic Technologies (58 strategic EU technologies) on one layer and m is the number of International Patent
Classification (IPC) on the other layer. Each element Tj; is assigned a value:

T = {1 if IPC i belongs to technology j
Y 0 otherwise [1]

The development of strategies and economic policies aimed at gaining a competitive advantage in the
technological domain requires the identification of core and emerging technologies, which respectively
represent established technological foundations and promising innovations for the future (Cho et al., 2011).
Hence, to simplify our analysis, we apply a one-mode projection that transforms the bipartite network into a
monopartite one (Newman, 2018), i.e. we created a technology-technology network, linking two technologies
based on the number and type of IPC categories they share. For example, if Cloud and edge computing and AI-
enabled systems both share IPC categories, they will be linked in the monopartite network, with the strength of
their connection proportional to the number of IPC categories they share.

In summary, finding a monopartite network that most accurately depicts the bipartite one while preserving as
much information as possible is the basic objective; therefore, using the one-mode projection is an efficient way
to reduce complexity (Newman, 2018).

To achieve this, we followed the methodology proposed by Saracco et al. (2015), implementing appropriate
null models to detect statistically relevant patterns in real bipartite networks. Specifically, we use the Bipartite
Configuration Model (BiCM). The model generates a probability distribution over possible bipartite networks,
preserving the observed degree sequences (the number of connections each node has), while treating the links
as independent. As a result, we obtain a monopartite network where nodes of the same layer are connected
based on their co-occurrence in the original bipartite structure. This allows us to create a V;;" matrix connecting
the ji, technology to the j’,, technology.

As highlighted by Saracco et al. (2015), these projections can be used to compute topological measures, such as
degree centrality and other metrics that capture the structure of the original bipartite network while reducing
its complexity.

In the context of graph theory and network analysis, various measures are used to evaluate the centrality and
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connectivity of the nodes within a graph. These measures can be divided into two categories: direct and indirect
measures.

Direct measures are computed directly from the graph based on the nodes and edges (links). These measures do
not require additional computations and are simple to derive from the graph structure itself. Degree centrality
is the most basic statistic in network analysis because it basically answers the simple question: “Given any
particular technology of interest (in our case EUST), how many other technologies (EUST) are connected
to it?”. The degree of a technology-node v; represents the number of adjacent nodes, indicating how well-
connected the node is in the graph. A more advanced indirect centrality measure is shown in Appendix,
providing consistent results with the simple degree centrality.

6.2 Results

We constructed the bipartite network introduced in 6.1, using IPCs categories (4-digit level®) and the 58 EUST
identified by the European Union (Table Al in Appendix). From this, we derived the technology-technology
network, which has 58 nodes, where each node represents a strategic EUST, and connections between them
are established based on shared IPC categories. We then computed the degree centrality of this network,
identifying the top 10 EUST with the highest degree. A higher degree centrality indicates that a technology is
strongly interconnected with many others, suggesting that the capabilities required to innovate in that field are
also relevant to multiple other technologies. These highly connected technologies act as technological pivots,
facilitating advancements not only within their domain but also across diverse and potentially unrelated sectors
(Pichler et al., 2020, Tseng et al., 2016).

Among the technologies with the highest degree, we find Cloud and edge computing (9), Cyber security
technologies inc. cyber- surveillance, security and intrusion systems, digital forensics (8) and Hydrogen and
new fuels (7) (Table 10). The high degree centrality of Cloud and Edge Computing suggests that patent-holding
firms investing in this area may also engage with other EUST. Some technologies have no significant connection
to other technologies; this will be referred to as isolated technologies. (For each technology, we have created
tables linking the EU Strategic Technologies, which are provided in Appendix, Table A7).

We are able to visualize the statistically significant connections between technologies in Figure 5. The nodes
with higher degrees are highlighted within the graph, with larger nodes representing higher degrees and smaller
nodes indicating lower degrees.

8. In line with the approach proposed in Bumbea et al. (2025), we constructed the incidence matrix at the 4-digit IPC level by
aggregating the 14-digit IPC codes. This aggregation reduced sparsity and enhanced connectivity, allowing for more reliable
inferences on technological interrelationships, within the graphs.
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Table 10 Ranking (top-10) of strategic EU technologies, extracted from the BiCM, ordered by degree
centrality

Technologies Degree
Cloud and edge computing 9
Cyber security technologies incl. cyber- surveillance, security and intrusion systems, digital g
forensics

Hydrogen and new fuels 7
Hydrogen technologies, including electrolysers and fuel cells 7
Al-enabled systems 7
Space surveillance and Earth observation technologies 7
Computer vision, language processing, object recognition 6
High Performance Computing 6
Internet of Things (IoT) and Virtual Reality 6
Renewable Fuels of Non-Biological Origin Technologies 6

Source: Research Center of the Chambers of Commerce Guglielmo Tagliacarne, Universitas Mercatorum
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Figure 5. The technology-technology network.
The size of each node depends on the number of links it has, therefore, nodes with 0 links, representing
isolated technologies, disappear.
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7. Conclusion

The current EU policy agenda has now placed technological sovereignty and economic security at its very
core, recognizing the indispensable need to close the innovation gap vis-a-vis other global actors, namely the
US, so as to safeguard the Union’s economic resilience. In practice, this has been translated into an ambitious
industrial policy platform, encompassing several programmes (in particular, STEP and NZIA EU Regulations)
aimed at supporting investments in strategic technologies under the umbrella of Economic Security. This
framework, which has now replaced the earlier paradigm of Open Strategic Autonomy, further stresses the
strategic value of technological sovereignty for both competitiveness and safety and security, while preserving
the EU’s commitment to an open, rule-based order (Edler, 2024).

The Letta and Draghi reports both highlighted the urgency of accelerating the uptake of advanced technologies
(i.e., deep-tech, net-zero technologies) by also leveraging a well-functioning Single Market, which is a crucial
condition for European firms to scale up, innovate and invest in these types of technologies.

The present study has many objectives. First, it aims to provide empirical evidence on firms’ degree of innovation
in EU strategic technologies (EUST) - also highlighting the Net-Zero technologies (EUST NZ) - both among
global actors, above all the US and China, and across EU member states. To do this, the study measures
innovation by mapping the patent codes (IPC classification) linked to EUST by applying Large Language Model
(LLM) with a robustness check by scraping a sample of firms’ websites. Second, it investigates whether there is a
positive effect between innovation in EUST and labour productivity at the firm level, although for Italian firms
only. Finally, it investigates the interdependencies between each EUST through network analysis.

In the face of these aims, results shows that: i) there is a high heterogeneity of firms’ innovation propensity
in EUST among EU Member States; ii) compared to the US, the EU shows a more widespread distribution of
firms with patents in EUST but suffers a gap in terms of number of patents; iii) with regards to China, the EU’s
position is reversed in light of a drawback in terms of firms’ propensity but an edge in terms of patent diffusion;
iv) there a positive effect of innovation in EUST on firm’s labour productivity, which further increases in the
case of Net-Zero technologies; v) R&D and a developed capital market further support EUST innovation; vii)
some strategic technologies, such as those related to Cloud computing, Cyber security, Hydrogen, Artificial
Intelligence, Space surveillance and Earth observation technologies, demonstrate higher degrees of connection
with other EUST. The empirical evidence in this study is intended to provide useful information for the EU’s
industrial policy design. The contribution to industrial policy is twofold. First, at a geographical level, it aims
at favouring an entrepreneurial convergence in terms of innovation in EUST - including EUST NZ - between
member states. Second, technologically, it seeks to incentivise “trigger” technologies, i.e., those showing higher
degrees of interdependence with other strategic technologies (namely, degree of centrality), therefore facilitating
the identification of those technologies which can contribute the most to the technological sovereignty of the EU.
Notwithstanding, the present study also shows some limitations. Firstly, the study investigates innovation only
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through patents. Secondly, the identification of patent codes needs further robustness checks, such as web
scraping on all firms owning EUST patents besides on only a sample of firms. Thirdly, we consider patents with
a filing date of the last 20 years, so further analysis by changing the time period could be useful. Fourthly, with
regards to the econometric analysis, which is based on the average level of labour productivity of the last ten
years, further robustness checks by changing the time period may be needed, as well as taking into account the
time variation besides the levels. The analysis inquiring into the causal relationship should be strengthened
through specific types of analyses such as difference-in-difference.

Along with the network analysis, fitness and complexity analyses would also be of great value for policymakers.
Future developments of this study will extend to labour force skill mismatches, with a particular focus on
advanced digital competencies. Finally, given the gap between knowledge generation and commercial
exploitation of patents, future developments will empirically investigate the nexus between patenting and its
exploitation by firms (i.e., manufacturing, selling, licensing, or distributing the patented product or process).
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Appendix

Table Al. List of EU Strategic Technologies divided into non Net-Zero (EUST_noNZ) and Net-Zero (EUST_NZ)

Net-Zero type

Description

EUST_noNZ Smart grids and energy storage, batteries

EUST_noNZ Additive manufacturing, including in the field

EUST_noNZ Al-enabled systems

EUST_noNZ Cloud and edge computing

EUST_noNZ Computer vision, language processing, object recognition

EUST_noNZ s(;};lt)ee; s:f;;;iizlt;:il;zli(c);gies incl. cyber- surveillance, security and intrusion
EUST_noNZ Data analytics technologies

EUST_noNZ Dedicated space-focused technologies

EUST noNZ iﬁﬁiﬁg;};ﬂfgi I;icro—precision manufacturing and small-scale laser
EUST_noNZ Distributed ledger and digital identity technologies

EUST_noNZ Electro-optical, radar, chemical, biological, radiation and distributed sensing
EUST_noNZ Exoskeletons

EUST_noNZ Gene-drive

EUST_noNZ Gravity meters and gradiometers

EUST_noNZ I()E;lsiiili)nnc; zcjlavigaltion, and control technologies, including avionics and marine
EUST_noNZ High frequency chips

EUST_noNZ High Performance Computing

EUST_noNZ Hydrogen and new fuels

EUST_noNZ Internet of Things (IoT) and Virtual Reality

EUST_noNZ Magnetometers, magnetic gradiometers

EUST_noNZ Microelectronics and Processors

EUST_noNZ Net-zero technologies, including photovoltaics

EUST_noNZ New genomic technique

EUST_noNZ Nuclear fusion technologies, reactors and power generation, radiological

Conversion/Enrichment/Recycling Technologies
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Propulsion technologies, including hypersonics and components for military

EUST_noNZ use
EUST_noNZ Quantum communications
EUST_noNZ Quantum computing
EUST_noNZ Quantum cryptography
EUST_noNZ Quantum sensing and radar
EUST_noNZ Robotics and Autonomous Systems
EUST_noNZ Robots and robot-controlled precision systems
EUST_noNZ Secure communications including Low Earth Orbit (LEO) connectivity
EUST_noNZ (S;tztélir(e) cfgiil:;z;nsi)c:ﬁgrggnd connectivity, such as RAN & Open RAN
EUST_noNZ Semiconductor manufacturing equipment at very advanced node sizes
EUST_noNZ Space positioning, navigation and timing (PNT)
EUST_noNZ Space surveillance and Earth observation technologies
EUST_noNZ Synthetic biology
EUST_noNZ Techniques of genetic modification
EUST_noNZ Technologies for extraction, processing and recycling of critical raw materials
BT oz |l e and sasatnable by desgn aterile
EUST_noNZ Underwater electric field sensors
EUST_NZ Battery and energy storage technologies
EUST_NZ I;;(())I(Iiljz;z;ill; zi?lcrlll(l)it)lgoistechnologles, Including Bio-Based Chemical
EUST_NZ Carbon Capture and Storage Technologies
EUST_NZ CO2 transport technologies
EUST_NZ Electricity Qrid Technologies, I.ncludin.g .Ele.ctric Char‘ging Technologies for
Transportation and Technologies to Digitalize the Grid
EUST_NZ Energy System-Related Energy Efficiency Technologies
EUST_NZ Heat pumps and geothermal energy technologies
EUST_NZ Hydrogen technologies, including electrolysers and fuel cells
EUST_NZ Nuclear Fission Energy Technologies, Including Nuclear Fuel Cycle

Technologies
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EUST_NZ Onshore Wind and Offshore Renewable Technologies
EUST_NZ Sustainable Propulsion Technologies for Transportation

Renewable energy technologies not covered under the previous categories
(osmotic energy technologies, ambient energy technologies, hydropower
EUST_NZ technologies, biomass technologies, landfill gas technologies, sewage treatment
plant gas technologies, biogas technologies, thermal energy technologies
including heat grid technologies)

EUST_NZ Renewable Fuels of Non-Biological Origin Technologies

EUST_NZ Solar technologies

EUST_NZ Sustainable Alternative Fuels Technologies

EUST_NZ Sustainable biogas and biomethane technologies

Map Al. EUST NZ firms (number)

EUST NZ firms
[1136- 1,662
11,663 - 6,424
(I 6,425 - 12,572
' 12,573 - 87,050

Central and
South America
773

Oceania
806

Source: Research Center of the Chambers of Commerce Guglielmo Tagliacarne
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Map A2. EUST NZ firms per 10,000 firms

EUST NZ firms per

10,000 firms B
* Central and 4
L 10-3 South
) [ 14-7 America
- 8_14 Oceania
8
I 15-39

Source: Research Center of the Chambers of Commerce Guglielmo Tagliacarne

Map A3. EUST NZ patents per 100,000 inhabitants

EUST NZ patents
per 100,000

inhabitants Central and 4
- South
. [ Jo0-23 America
T24-62 Oceania
I 63 - 110 a8
W 111 - 422

Source: Research Center of the Chambers of Commerce Guglielmo Tagliacarne
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Table A2. Macro regions

56

Firms* Patents
N. firms of which EUST EUST NZ T T 12
Macro . . N. patents patents patents
. with with firms per  firms per N. patents EUST
reglons patentsin  patentsin 10,000 10,000 ingusT " N7 . Oge; o 1 01;65 00
EUST EUST NZ firms firms > >
persons persons
EU27 36,406 11,938 21 7 1,726,337 348279 385 78
USA 41,997 10,232 22 5 3,354,968 369,110 1,002 110
China 226,424 87,050 100 39 4,953,288 868,339 351 62
Japan 19,041 6,424 110 37 2,825,736 525,122 2,269 422
Canada 2,309 673 24 7 108,928 17,502 272 44
Russia 4519 1,662 20 7 54,022 16,938 38 12
Central and
South
America 2,557 773 2 1 102,261 10,668 16 2
Africa 637 136 2 0 10,018 4,930 1 0
Oceania 3.909 806 15 3 46,325 10,225 103 23
Other
European 12,677 3,798 16 5 359,932 80,055 153 34
Other Asian 49,782 12,572 57 14 2,209,069 323,814 70 10
World 400,258 136,064 41 14 15,750,884 2,574,982 195 32

* All data refers to the limited companies.
Source: Research Center of the Chambers of Commerce Guglielmo Tagliacarne




Map A4. EUST NZ firms (number)

EUST NZ firms

[15-46
[47-143
[ 144 -787
I 738 - 1,436
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Source: Research Center of the Chambers of Commerce Guglielmo Tagliacarne

Map A5. EUST NZ firms per 10,000 firms

EUST NZ firms per
10,000 firms
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Source: Research Center of the Chambers of Commerce Guglielmo Tagliacarne
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Map A6. EUST NZ patents per 100,000 inhabitants

EUST NZ firms per
10,000 firms
Ji1-2
13-4
=s-7
[ EE]
1420

Source: Research Center of the Chambers of Commerce Guglielmo Tagliacarne
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Table A3 European Union countries

Firms* Patents
. N. tjlrms of wthich EUST EUST NZ N. patents p]illtiei];s E[I’.;SthI:ISZ
EU Regions vt with - firms per  firms per N-patents - busT per per
patentsin  patents in 10,000 10,000 in EUST NZ 100,000 100.000
EUST  EUSTNZ firms firms persons  persons

Austria 1,098 383 52 18 35,227 7,143 386 78
Belgium 1,094 342 18 6 31,958 11,050 271 94
Bulgaria 449 99 6 1 1,193 225 19 3
Croatia 75 19 5 1 529 149 14 4
Cyprus 108 24 12 3 2,795 240 208 18
Czech
Republic 812 306 16 6 6,053 1,884 56 17
Denmark 922 393 26 11 44,860 31,312 754 527
Estonia 122 4 5 2 833 272 61 20
Finland 1,313 361 46 13 114,728 8,716 2055 156
France 4,577 1,436 16 5 334,723 66,092 490 97
Germany 10,755 3,727 59 20 581,786 129,472 699 155
Greece 89 28 10 3 759 111 7 1
Hungary 309 97 9 3 2,494 687 26 7
Ireland 556 143 34 9 66,346 3,504 1250 66
Italy 5,169 1,392 35 9 61,605 14,529 104 25
Latvia 58 19 5 2 576 196 31 10
Lithuania 86 20 9 2 1,741 297 61 10
Luxembourg 258 76 25 7 7,795 1,647 1170 247
Malta 34 5 24 4 1,434 47 259 9
Netherlands 2,351 945 20 8 175,334 39,488 981 221
Poland 1,265 459 23 8 13,302 4,588 36 13
Portugal 279 71 4 1 3,415 903 g2 9
Romania 319 95 2 1 1,759 489 9 3
Slovakia 220 79 6 2 2,255 462 ) 9
Slovenia 183 46 23 6 1,035 335 49 16
Spain 2215 787 11 4 37,696 14,519 78 30
Sweden 1,690 544 26 8 194,106 9,922 1842 94
B2y 36,406 11,938 21 7 1,726,337 348,279 385 78

* All data refers to the limited companies.
Source: Research Center of the Chambers of Commerce Guglielmo Tagliacarne
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Table A4. Variables description of the propensity score

Variables Type Description

Dependent variables

EUST Binary 1 = firm with patents in EU Strategic Technologies; 0 = otherwise

(source: elaboration on Moody’s data)

Independent variables
1 = if the firm belongs to a n-sector according to the
OECD/EUROSTAT technology and knowledge intensity classification
(high/medium-high technology intensive manufacturing;

Industry tech Dummies low/medium-low technology intensive manufacturing; high
knowledge intensity services; low knowledge intensive services);
sectors not elsewhere classified (Industry n.e.c.); 0 = otherwise (source:
elaboration on ISTAT data)

1 = if the firm belongs to a n-size class: less than 10 employees (Micro);

Size Dummies 10-49 employees (Small); 50-249 employees (Medium); 250 and over

employees (Large); 0 = otherwise (source: elaboration on ISTAT)

1 = if the firm belongs to a n-NUTS 1 (North-West, North-East,

Localization Dummies .

Center, South*); 0 = otherwise.
Age Discrete Number of years since inception (source: elaboration on ISTAT)
Graduates Continuous  Share of graduated employees of total employees

1 = if the firm belongs to a n-type of governance: Foreign-

invested firms with foreign control (FI foreign control); Foreign-
Governance Dummies invested firm with Italian control (FI Italian control); Italian
corporate group (Corporate group); Independent firm
(Independent); not classified (Gov nc) (source: elaboration on ISTAT)
R&D asset value per employee (euro) (source: elaboration on

R&D Continuous Moody's data)
Capital market Dummy 1 = if the firm is a listed company (source: Moody’s)
Asset Continuous Total asset (thousand euro) (source: elaboration on Moody’s data)

*South includes also the Islands.
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Table A5. Probit of propensity score

Pr(Treatment)
HM 0.572***
(0.085)
HKIS 0.395%**
(0.040)
LKIS 0.640***
(0.073)
Industry n.e.c. 0.194**
(0.057)
Small 0.107*
(0.060)
Medium 0.326***
(0.066)
Large 0.738***
(0.079)
North-East 0.029
(0.037)
Center 0.007
(0.051)
South 0.115
(0.073)
Age -0.000
(0.001)

Note: i) Treatment refers to the variable EUST. ii) standard errors in parentheses.

P <0.01, **p<0.05 *p<0.1

Pr(Treatment)
Graduates 1.041%**
(0.098)
FI foreign control 0.028
(0.062)
Fl italian control 0.128***
(0.049)
Corporate group -0.005
(0.044)
Gov n.c -0.068
(0.534)
Re&D 0.005***
(0.001)
Capital market 0.403%**
(0.118)
Asset 0.000
(0.000)
Pseudo R? 0.097
LR chi2 824.63***
Observations 8,710
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Figure Al. Propensity-score density before and after matching

e —— Treated 37 —— Treated

- Untreated === Untreated

Density
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0 2 4 6 8 1 0 2 4 6 8
propensity-score (Before) propensity-score (After)

Table A6. Balancing properties of the matched sample

Treated Matched t-test p-value
control
HM 0.450 0.424 1.63 0.103
HKIS 0.171 0.181 -0.77 0.440
LKIS 0.122 0.136 -1.34 0.180
Industry n.e.c. 0.051 0.053 -0.26 0.796
Small 0.311 0.313 -0.07 0.944
Medium 0.380 0.374 0.40 0.686
Large 0.215 0.219 -0.24 0.812
North-East 0.363 0.366 -0.20 0.839
Center 0.139 0.144 -0.47 0.639
South 0.062 0.064 -0.27 0.788
Age 38.822 35.144 -0.60 0.546
Graduates 0.286 0.284 0.34 0.731
FI foreign control 0.149 0.157 -0.68 0.496
Fl italian control 0.353 0.343 0.63 0.526
Corporate group 0.255 0.2654 -0.67 0.503
Govn.c 0.005 0.007 -0.31 0.756
R&D 2.266 2.791 -0.81 0.420
Capital market 0.046 0.051 -0.68 0.495
Asset 137.15 116.51 0.76 0.446
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Table A7. Technological interdependencies: Technologies ordered by Degree centrality.
For each EU strategic technology, we report the list of the other EU strategic technologies most connected
by technological interdependencies

1. Cloud and edge computing (9)
Secure communications including Low Earth Orbit (LEO) connectivity

Secure digital communications and connectivity, such as RAN & Open RAN (Radio Access Network) and 6G

Computer vision, language processing, object recognition

High Performance Computing
Internet of Things (IoT) and Virtual Reality

Data analytics technologies

Cyber security technologies incl. cyber- surveillance, security and intrusion systems, digital forensics

Al-enabled systems

Quantum cryptography

2. Cyber security technologies incl. cyber- surveillance, security and intrusion systems, digital forensics (8)
Quantum cryptography

Secure communications including Low Earth Orbit (LEO) connectivity

Distributed ledger and digital identity technologies

High Performance Computing
Internet of Things (IoT) and Virtual Reality

Al-enabled systems

Computer vision, language processing, object recognition

Cloud and edge computing

3. Hydrogen and new fuels (7)
Hydrogen technologies, including electrolysers and fuel cells

Renewable Fuels of Non-Biological Origin Technologies

Sustainable biogas and biomethane technologies

Smart grids and energy storage, batteries

Battery and energy storage technologies

CO2 transport technologies

Carbon Capture and Storage Technologies
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4. Hydrogen technologies, including electrolysers and fuel cells (7)

Renewable Fuels of Non-Biological Origin Technologies

Sustainable biogas and biomethane technologies

Smart grids and energy storage, batteries

Battery and energy storage technologies

CO2 transport technologies

Carbon Capture and Storage Technologies

Hydrogen and new fuels

5. Al-enabled systems (7)

Cloud and edge computing

Computer vision, language processing, object recognition

High Performance Computing

Internet of Things (IoT) and Virtual Reality

Data analytics technologies

Cyber security technologies, incl. cyber- surveillance, security and intrusion systems, digital forensics

Distributed ledger and digital identity technologies

6. Space surveillance and Earth observation technologies (7)

Underwater electric field sensors

Dedicated space-focused technologies

Electro-optical, radar, chemical, biological, radiation and distributed sensing

Guidance, navigation, and control technologies, including avionics and marine positioning

Magnetometers, magnetic gradiometers

Quantum sensing and radar

Space positioning, navigation and timing (PNT)

7. Computer vision, language processing, object recognition (6)

High Performance Computing

Internet of Things (IoT) and Virtual Reality

Data analytics technologies

Cyber security technologies incl. cyber- surveillance, security and intrusion systems, digital forensics

Al-enabled systems

Cloud and edge computing
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8. High Performance Computing (6)

Internet of Things (IoT) and Virtual Reality

Al-enabled systems

Cloud and edge computing

Computer vision, language processing, object recognition

Cyber security technologies incl. cyber- surveillance, security and intrusion systems, digital forensics

Data analytics technologies

9. Internet of Things (IoT) and Virtual Reality (6)

Al-enabled systems

Cloud and edge computing

Computer vision, language processing, object recognition

Cyber security technologies incl. cyber- surveillance, security and intrusion systems, digital forensics

Data analytics technologies

High Performance Computing

10. Renewable Fuels of Non-Biological Origin Technologies (6)

Sustainable Alternative Fuels Technologies

Sustainable biogas and biomethane technologies

CO2 transport technologies

Carbon Capture and Storage Technologies

Hydrogen and new fuels

Hydrogen technologies, including electrolysers and fuel cells

11. Electro-optical, radar, chemical, biological, radiation and distributed sensing (6)

Space positioning, navigation and timing (PNT)

Guidance, navigation, and control technologies, including avionics and marine positioning

Quantum sensing and radar

Space surveillance and Earth observation technologies

Underwater electric field sensors

Magnetometers, magnetic gradiometers
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12. Quantum sensing and radar (6)

Space surveillance and Earth observation technologies

Underwater electric field sensors

Electro-optical, radar, chemical, biological, radiation and distributed sensing

Guidance, navigation, and control technologies, including avionics and marine positioning

Magnetometers, magnetic gradiometers

Underwater electric field sensors

13. Data analytics technologies (5)

High Performance Computing

Internet of Things (IoT) and Virtual Reality

Al-enabled systems

Cloud and edge computing

Computer vision, language processing, object recognition

14. CO2 transport technologies (5)

Sustainable biogas and biomethane technologies

Carbon Capture and Storage Technologies

Renewable Fuels of Non-Biological Origin Technologies

Hydrogen and new fuels

Hydrogen technologies, including electrolysers and fuel cells

15. Sustainable biogas and biomethane technologies (5)

CO2 transport technologies

Carbon Capture and Storage Technologies

Hydrogen and new fuels

Hydrogen technologies, including electrolysers and fuel cells

Renewable Fuels of Non-Biological Origin Technologies

16. Carbon Capture and Storage Technologies (5)

Renewable Fuels of Non-Biological Origin Technologies

Sustainable biogas and biomethane technologies

Hydrogen and new fuels
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Hydrogen technologies, including electrolysers and fuel cells

CO2 transport technologies

17. Secure communications including Low Earth Orbit (LEO) connectivity (5)

Secure digital communications and connectivity, such as RAN & Open RAN (Radio Access Network) and 6G

Cloud and edge computing

Cyber security technologies incl. cyber- surveillance, security and intrusion systems, digital forensics

Distributed ledger and digital identity technologies

Quantum cryptography

18. Quantum cryptography (5)

Secure communications including Low Earth Orbit (LEO) connectivity

Secure digital communications and connectivity, such as RAN & Open RAN (Radio Access Network) and 6G

Cloud and edge computing

Cyber security technologies incl. cyber- surveillance, security and intrusion systems, digital forensics

Distributed ledger and digital identity technologies

19. Space positioning, navigation and timing (PNT) (5)

Space surveillance and Earth observation technologies

Electro-optical, radar, chemical, biological, radiation and distributed sensing

Gravity meters and gradiometers

Guidance, navigation, and control technologies, including avionics and marine positioning

Quantum sensing and radar

20. Guidance, navigation, and control technologies, including avionics and marine positioning (5)

Space positioning, navigation and timing (PNT)

Quantum sensing and radar

Space surveillance and Earth observation technologies

Electro-optical, radar, chemical, biological, radiation and distributed sensing

Gravity meters and gradiometers

21. Smart grids and energy storage, batteries (4)

Battery and energy storage technologies

Hydrogen and new fuels
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Hydrogen technologies, including electrolysers and fuel cells

Electricity Grid Technologies, Including Electric Charging Technologies for Transportation and Technologies to Digitalize
the Grid

22. Distributed ledger and digital identity technologies (4)

Quantum cryptography

Secure communications including Low Earth Orbit (LEO) connectivity

Al-enabled systems

Cyber security technologies incl. cyber- surveillance, security and intrusion systems, digital forensics

23. Biomaterials Production Technologies, Including Bio-Based Chemical Production Technologies (4)

Gene-drive

Synthetic biology

Techniques of genetic modification

New genomic technique

24. Gene-drive (4)

Synthetic biology

Techniques of genetic modification

New genomic technique

Biomaterials Production Technologies, Including Bio-Based Chemical Production Technologies

25. Synthetic biology (4)

Techniques of genetic modification

Biomaterials Production Technologies, Including Bio-Based Chemical Production Technologies

Gene-drive

New genomic technique

26. Techniques of genetic modification (4)

Biomaterials Production Technologies, Including Bio-Based Chemical Production Technologies

Gene-drive

New genomic technique

Synthetic biology
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27. New genomic technique (4)

Synthetic biology

Techniques of genetic modification

Biomaterials Production Technologies, Including Bio-Based Chemical Production Technologies

Gene-drive

28. Secure digital communications and connectivity, such as RAN & Open RAN (Radio Access Network) and 6G (4)

Cloud and edge computing

Quantum communications

Quantum cryptography

Secure communications including Low Earth Orbit (LEO) connectivity

29. Underwater electric field sensors (4)

Electro-optical, radar, chemical, biological, radiation and distributed sensing

Magnetometers, magnetic gradiometers

Quantum sensing and radar

Space surveillance and Earth observation technologies

30. Magnetometers, magnetic gradiometers (4)

Quantum sensing and radar

Space surveillance and Earth observation technologies

Underwater electric field sensors

Electro-optical, radar, chemical, biological, radiation and distributed sensing

31. Battery and energy storage technologies (3)

Hydrogen and new fuels

Hydrogen technologies, including electrolysers and fuel cells

Smart grids and energy storage, batteries

32. Gravity meters and gradiometers (2)

Space positioning, navigation and timing (PNT)

Guidance, navigation, and control technologies, including avionics and marine positioning

33. Microelectronics and Processors (2)

Semiconductor manufacturing equipment at very advanced node sizes
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Net-zero technologies, including photovoltaics

34. Net-zero technologies, including photovoltaics (2)
Solar technologies

Microelectronics and Processors

35. Sustainable Alternative Fuels Technologies (2)
Renewable Fuels of Non-Biological Origin Technologies

Renewable energy technologies not covered under the previous categories

36. Electricity Grid Technologies, Including Electric Charging Technologies for Transportation and Technologies
to Digitalize the Grid (1)
Smart grids and energy storage, batteries

37. Dedicated space-focused technologies (1)
Space surveillance and Earth observation technologies

38. Exoskeletons (1)
Robots and robot-controlled precision systems

39. Robots and robot-controlled precision systems (1)
Exoskeletons

40. Semiconductor manufacturing equipment at very advanced node sizes (1)

Microelectronics and Processors

41. Solar technologies (1)
Net-zero technologies, including photovoltaics

42. Nuclear Fission Energy Technologies, Including Nuclear Fuel Cycle Technologies (1)
Nuclear fusion technologies, reactors and power generation, radiological Conversion/Enrichment/Recycling Technologies

43. Nuclear fusion technologies, reactors and power generation, radiological Conversion/Enrichment/Recycling
Technologies (1)
Nuclear Fission Energy Technologies, Including Nuclear Fuel Cycle Technologies
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44. Onshore Wind and Offshore Renewable Technologies (1)

Sustainable Propulsion Technologies for Transportation

45. Sustainable Propulsion Technologies for Transportation (1)

Onshore Wind and Offshore Renewable Technologies

46. Quantum communications (1)
Secure digital communications and connectivity, such as RAN & Open RAN (Radio Access Network) and 6G

47. Renewable energy technologies not covered under the previous categories (1)

Sustainable Alternative Fuels Technologies

Source: Research Center of the Chambers of Commerce Guglielmo Tagliacarne, Universitas Mercatorum

Other centrality measure: The Betweenness centrality

Indirect measures capture the global behaviour of the nodes within the network, reflecting their role in the
overall connectivity. For example, betweenness centrality is an indirect measure that quantifies the extent to
which anode acts as an intermediary in the shortest paths between other pairs of nodes. Specifically, it calculates
the number of shortest paths that pass through a given node, indicating how central a node is in connecting
different parts of the network. The betweenness centrality is given by Eqs Al.

Ny (wv)/n(uv)
Bety = Zuzv, wews} “_pmoz  [All
Let n(u,v) represent the total number of shortest paths P *,,,, from node u to node v, and let
Ny (U, V) =[{P *y,, |W & P %, }| represent the number of shortest paths from node u to node v that pass-
through node w. The betweenness centrality of node w can then be calculated as the fraction of shortest paths
between all pairs of nodes that pass-through w, which provides a measure of the importance of node w in

connecting different parts of the network. We also computed the Betweenness centrality.
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Table A8. The Betweenness centrality

Technologies Betweenness
Renewable Fuels of Non-Biological Origin Technologies 0,0155
Cloud and edge computing 0,0148
Secure digital communications and connectivity, such as RAN & Open RAN (Radio Access 0.0099
Network) and 6G

Smart grids and energy storage, batteries 0,0087
Hydrogen and new fuels 0,0087
Hydrogen technologies, including electrolysers and fuel cells 0,0087
Space surveillance and Earth observation technologies 0,0087
Sustainable Alternative Fuels Technologies 0,0087
Cyber security technologies incl. cyber- surveillance, security and intrusion systems, digital 0,0052
forensics

Space positioning, navigation and timing (PNT) 0,0029

Source: Research Center of the Chambers of Commerce Guglielmo Tagliacarne, Universitas Mercatorum

Having a high betweenness centrality means that a particular technology plays a crucial role in the
interconnection of other technologies or concepts in the overall system. Technologies with high betweenness
are those that act as ‘intermediaries’ or ‘connectors’ for many other technologies. For example, Renewable
Fuels of Non-Biological Origin Technologies and Cloud and Edge Computing are among the most central in
the network, suggesting that they are connected to many other technologies or could serve as hubs for future
technological developments. Technologies with high betweenness centrality are critical for the network: if these
intermediary nodes were removed, the graph could fragment, disrupting many connections between other
technologies. In practice, without these nodes, the network would become less connected, compromising the
diffusion of innovations. Therefore, these technologies are essential for maintaining the integrity and cohesion
of the entire system, and their absence could lead to a ‘collapse’ of the graph.

72



¢

CENTRO STUDI DELLE
CAMERE DI COMMERCIO
GUGLIELMO TAGLIACARNE





